Analytic ranks of elliptic curves over number fields

نویسندگان

چکیده

Let E E be an elliptic curve over alttext="double-struck upper Q"> Q encoding="application/x-tex">\mathbb {Q} . Then, we show that the average analytic rank of cyclic extensions degree alttext="l"> l encoding="application/x-tex">l with a prime not equal to alttext="2"> 2 encoding="application/x-tex">2 , is at most alttext="2 plus r Subscript double-struck Q Baseline left-parenthesis E right-parenthesis"> + r ( stretchy="false">) encoding="application/x-tex">2+r_\mathbb {Q}(E) where alttext="r encoding="application/x-tex">r_\mathbb This bound independent Using recent result Bhargava, Taniguchi and Thorne [Improved error estimates for Davenport–Heilbronn theorems, arxiv.org/abs/2107.12819, 2021], obtain non-trivial on S 3"> S 3 encoding="application/x-tex">S_3 -fields.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks of Elliptic Curves with Prescribed Torsion over Number Fields

We study the structure of the Mordell–Weil group of elliptic curves over number fields of degree 2, 3, and 4. We show that if T is a group, then either the class of all elliptic curves over quadratic fields with torsion subgroup T is empty, or it contains curves of rank 0 as well as curves of positive rank. We prove a similar but slightly weaker result for cubic and quartic fields. On the other...

متن کامل

Ranks of elliptic curves over function fields

We present experimental evidence to support the widely held belief that one half of all elliptic curves have infinitely many rational points. The method used to gather this evidence is a refinement of an algorithm due to the author which is based upon rigid and crystalline cohomology.

متن کامل

Vanishing of L-functions of Elliptic Curves over Number Fields

Let E be an elliptic curve over Q, with L-function LE(s). For any primitive Dirichlet character χ, let LE(s, χ) be the L-function of E twisted by χ. In this paper, we use random matrix theory to study vanishing of the twisted L-functions LE(s, χ) at the central value s = 1. In particular, random matrix theory predicts that there are infinitely many characters of order 3 and 5 such that LE(1, χ)...

متن کامل

Reduction of elliptic curves over certain real quadratic number fields

The main result of this paper is that an elliptic curve having good reduction everywhere over a real quadratic field has a 2-rational point under certain hypotheses (primarily on class numbers of related fields). It extends the earlier case in which no ramification at 2 is allowed. Small fields satisfying the hypotheses are then found, and in four cases the non-existence of such elliptic curves...

متن کامل

Torsion subgroups of elliptic curves over number fields

This is an extended version of an expository talk given at a seminar on Mazur’s torsion theorem, summarizing work on generalizations to number fields and related results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2023

ISSN: ['2330-1511']

DOI: https://doi.org/10.1090/proc/16182